<
The Pulse Team is excited to announce the Pulse Physiology Engine 4.1.0 release. Upgrade now to get the best in dynamic simulation.
×

Pulse In Action

Possible physiology engine applications

Virtual/Augmented Environments

Manikin-Based Simulations

Clinical Explorations

There is a wide range of potential applications, a few include:

  • Powering serious games for medical education and training
  • Producing responsive physiology in real time for manikin training
  • Performing in silico experiments to reduce the need for expensive lab work and clinical trials
  • Integrating a single-system model into the engine to understand full-body physiologic response
  • Providing synthetic patient inputs and outputs for sensor systems
  • Enabling hardware-in-the-loop (HIL) simulated patients testing solutions
  • Teaching and education interactive content
  • Pairing with virtual surgery planning/rehearsal
  • Creating digit twins based on real clinical data
  • Simulating multiscale modeling approaches

Featured Applications and Investigations

To feature your Pulse use case, please email us at kitware@kitware.com!

SimPulse

SimPulse utilizes Kitware’s Pulse Physiology Engine (“Pulse”) and integrates with SimEMR, KbPort’s Simulated Electronic Medical Record Platform (“SimEMR”). SimPulse combines the well-established training modules in SimEMR and the accurate physiological patient feedback produced by the Pulse engine in a simple, intuitive user-interface, to provide an accurate context of patient care by presenting healthcare learners with real-time, physiological and pharmacological patient data required for clinical decision-making and documentation. Well-suited for use in lab, classroom, and remote settings, SimPulse supports critical learning elements such as patient safety, medication administration, patient interactions, and patient vitals.

Computational Life

Computational Life provides personalized patient outcome predictions using computational models. Kitware and Computational Life have worked together to create a multi-fidelity, multi-scale model. This model couples a whole body lumped-parameter model with a one-dimensional computational fluid dynamics cardiovascular model to capture pressure and flow wave propagations throughout the body. The goal is to advance patient-specific predictions.

NP Skills Labs

The Clinic Immersives NP Skills Labs Enterprise allows nurse practitioner (NP) students to develop clinical lab skills using their own affordable Oculus Quest mobile VR. With this tool, students have unlimited access to perform virtual procedures anywhere at any time. This product also features hand tracking inputs that allow students to practice in either guided or expert modes.

Trauma Simulator

An immersive virtual reality emergency medicine training simulator for military medical personnel. This simulator uses the Unity game engine and Pulse to provide dynamic physiological feedback on the patient's condition from a wide range of injuries and treatments.

COVID-19 Multipatient Ventilation

An in silico investigation to help critical care physicians predict the risks associated with connecting multiple patients to a shared ventilator.

Distance Learning and Online Education

A partnership to demonstrate how the Pulse Physiology Suite can enhance the use of SimEMR to train medical professionals. Distance learning and online education have become a significant source of education during the COVID-19 pandemic.

Ventilation Management Trainer

A training simulator designed to mimic respiratory distress during mechanical ventilation. A simulated torso was developed and integrated with a Special Medical Emergency Evacuation Device. It is affixed with medical equipment utilized during Critical Care Air Transport Team missions. The torso includes a lung model, upper airway, and head with reproducible computerized algorithms. The simulator is responsive to treatment of conditions encountered during mechanical ventilation.

Pulse is fully integrated to autonomously drive all patient responses.

Combat Casualty Care Augmented Reality Intelligent Training System (C3ARESYS)

An augmented reality system to improve the realism of Combat Medics (68W) and Combat Lifesavers scenario-based training. C3ARESYS provides the opportunity to train on wounds and casualties that respond to treatments with feedback adapted to the trainee's skill level. C3ARESYS offloads work from the instructor, enabling focus on teaching rather than fixing shortcomings in casualty simulation.

Pulse is used to provide dynamic interactions to the patient and provide physiological feedback from the patient.

The BioMojo Virtual Patient Experience (VPE)

An interactive, multiplayer 3D healthcare and medicine themed, STEM education product. BioMojo VPE is designed to inspire and educate youth towards careers in healthcare, clinical research and biomedical engineering through fun, challenging virtual role play, teamwork, and problem-solving. Themes include emergency medicine, preventable chronic diseases, physiology, anatomy, genomics, and pharmacotherapy.

Players will perform (virtual) diagnostic procedures and other interactions with virtual patient avatars. Virtual patient physiology is provided by Pulse.

Medical Simulation and Training Architecture (MSTA)

The MSTA platform provides an open standard to connect manikins, part-tasks trainers, physiology engines, and other simulation technologies to support the creation of complex training systems necessary for future force readiness efforts.

MSTA successfully demonstrated an integrated TCCC training scenario that took a wounded virtual patient from field care to role 2 care. The training system consisted of a manikin, a custom control panel, a part task trainer, the Pulse physiology engine and an after action review engine.

Closed-Loop Physiology Management System

A system for investigating closed-loop physiology management for critical care with in-silico patients. Closed-Loop Assistants (CLAs) are designed to leverage medical device interfaces to add computers/algorithms to the clinical care loop to aid indecision-making and to implement the automatic application of interventions.

CPR Training System

A CPR simulator with real-time compression feedback and features to monitor performance metrics, such as time-to-CPR, compression depth, and rate. This system is controlled by a microcontroller to count the number of chest compressions and ghe pressure applied. The data is passed to the Pulse physiology engine in real-time and the state of the patient changes dynamically based on sensor inputs.

Extra Corporeal Membrane Oxygenation (ECMO) Training Simulator

A full-fledged training simulator of various procedures and scenarios involved in ECMO and the associated complications. The simulator has three main parts:

  1. A physical cardiovascular circuit that mimics the human circulation system, including an artificial human heart and a synthetic vasculature with cannulation pads.
  2. A physical ECMO circuit to simulate oxygenation with a color changing blood simulant, an external pump to regulate flow, and sensors to monitor vitals.
  3. A mathematical model of human physiology simulating respiratory failure and cardiac arrest based on Pulse Physiology Engine. Pulse helps to simulate clinical scenarios (i.e., hypovolemia, hypoxia, etc.) by controlling the cardiovascular and ECMO circuits, and provides real-time physiological feedback for experimental training.

Ventriculoperitoneal Shunt Performance

A high-fidelity computational surrogate head model focused on the ventricular system to optimize the performance of ventriculoperitoneal shunts. The cerebrospinal fluid model is being coupled with the cerebrovascular system using the Pulse physiology engine. In addition to globally quantifying the essential cerebrovascular parameters for the local high-fidelity analysis of shunt function, Pulse also provides an invaluable training capability to teach students about the effects of elevated ICP due to hydro-cephalus on the entire body.

Modeling Valvular Diseases

Simulating three valvular conditions: aortic stenosis, aortic regurgitation, and mitral stenosis. Pulse virtual physiology software has the potential to transform medical education by allowing medical students to learn in a consequence-free environment. Medically accurate physiology models are required to ensure that lessons learned virtually translate to the real world.

Virtual Pediatric Airway Workbench (VPAW)

A surgical planning tool for subglottic stenosis that incorporates three major components.

VPAW initiates with a CT scan of the patient and obtains a geometrical model through segmentation and surface reconstruction.

It then employs a computational fluid dynamics (CFD) engine based on a Lattice-Boltzmann formulation to provide airflow parameters for Pulse. Pulse then provides the physiologic response due to the airflow.

A real-time geometric authoring tool allows surgeons to edit the tracheal geometry using a haptic device as part of a surgical planning. VPAW calculates the physiologic results of each plan to be assessed by surgeons to identify the best course of action.

SOFA Integration

Created an interface plugin within the SOFA multi-physics simulation framework to link with the Pulse physiology engine.

Modular Deployment

Pulse is deployable on low size, weight, power, and cost (SWaP-C) systems, and has been shown to run faster than real-time on several single-board computers.

Distributed under the Apache License, Version 2.0.

See accompanying NOTICE file for details.